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This paper proposes a new approach to writing and verifying divide-and-conquer programs in Coq. Extending

the rich line of previous work on algebraic approaches to recursion schemes, we present an algebraic approach

to divide-and-conquer recursion: recursions are represented as a form of algebra, and from outer recursions,

one may initiate inner recursions that can construct data upon which the outer recursions may legally recurse.

Termination is enforced entirely by the typing discipline of our recursion schemes. Despite this, our approach

requires little from the underlying type system, and can be implemented in System �l plus a limited form

of positive-recursive types. Our implementation of the method in Coq does not rely on structural recursion

or on dependent types. The method is demonstrated on several examples, including mergesort, quicksort,

Harper’s regular-expression matcher, and others. An indexed version is also derived, implementing a form of

divide-and-conquer induction that can be used to reason about functions defined via our method.
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1 RECURSION IN COQ

In interactive theorem provers such as Coq, Agda, and Lean, users may prove properties of
strongly typed pure functional programs written in an ML-like language [de Moura et al. 2015;
The Agda development team 2016; The Coq development team 2016]. In addition to typing require-
ments, these functions must pass a static termination check, to ensure logical soundness. This
check is typically based on structural decrease of arguments to recursive calls, which covers many
familiar examples from functional programming, including map, filter, foldr, and more. Many
terminating programs use nonstructural recursions, however, including classic divide-and-conquer
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algorithms. For example, mergesort splits its input list roughly in half, recurses on the halves, and
then merges the results. The recursions on the two halves are not structural, because structural
recursion prohibits recursive calls on the results of other computations, like splitting.
Several techniques for nonstructural recursion have been proposed previously (Section 2). The

most prominent is well-founded recursion, where programs use explicit proof terms to justify
recursive calls based on decrease in a well-founded ordering. This technique uses dependent types to
connect the evidence to the recursive parameter. Cleverly, the evidence itself decreases structurally
at recursive call sites, so programs written in this style satisfy the structural termination check.

This paper proposes a different solution to the problem of nonstructural recursions in type theory.
Our approach relies on type-checking in Coq’s core pure type system, the Calculus of Constructions
(CC) [Coquand and Huet 1988]. We derive combinators in CC that are flexible enough to support
divide-and-conquer programming. Typability implies that all programs written with them indeed
terminate. Somewhat surprisingly, our method does not even require dependent types (in the sense
of types depending on terms): System �l plus a form of positive-recursive types is sufficient.
Our Coq development implements an interface for what we call divide-and-conquer recursion.

From outer recursions, one may initiate subsidiary inner recursions that can construct data upon
which the outer recursions may legally recurse. This is sufficient for examples like mergesort: the
splitting phase of the algorithm is implemented as a subsidiary recursion, which constructs lists
which may then be recursively sorted (by the outer recursion). Subsidiary recursions are provided
with functions that are like constructors, except that they have different types from the actual
constructors. Those types limit their use in a termination-preserving way.
Finally, while the paper’s focus is on the divide-and-conquer recursion scheme, we have also

derived a dependently typed version, enabling divide-and-conquer induction. Along with example
programs, we will consider example proofs of their behavior, defined in the same style. Our
development requires adding two postulates to Coq’s type theory: functional extensionality (a
commonly added axiom), and also impredicative Set, which while supported natively by Coq, is
somewhat more controversial. We will discuss this point further below (Section 7). The paper’s
specific contributions are:

(1) Formulation of an interface for divide-and-conquer recursion in Coq (Section 4). The formula-
tion is generic for any signature functor, and so applies once and for all to a large, standardly
used family of datatypes, including natural numbers, lists, binary and other forms of trees,
and many other common examples. It does not make use of dependent types, and users of
the interface do not prove statements showing that arguments decrease. Instead, the typing
of CC is used to enforce termination.

(2) Realistic examples in Coq coded against this interface (Section 5), including mergesort, run-
length encoding, and a function wordsBy, which breaks a list into its maximal sublists whose
elements do not satisfy a predicate p. Another example is Harper’s regular expression matcher,
which has been posed as a challenge problem for termination [Bove et al. 2016; Harper 1999].

(3) Derivation within Coq of an implementation of the interface (Section 6).
(4) Formulation and implementation of a dependently typed version of the interface, yield-

ing a divide-and-conquer induction principle (Section 8). Proofs using this principle are
demonstrated for the above examples, including that the sorting algorithms indeed sort.

An artifact with an implementation of these contributions in Coq is publicly available [Abreu et al.
2023].
To conclude this introduction, we would like to emphasize the theoretical contribution of our

approach: we show how to derive an advanced recursion scheme suitable for divide-and-conquer
recursion, using just �l plus a weakened form of positive-recursive types (Section 6.1). As these
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features are available in Coq, we use it as our vehicle to present the method. As we shall see,
however, our approach falls within the rich line of work on algebraic approaches to recursion
schemes, and is thus not limited to our specific realization in Coq.

2 STANDARD APPROACHES TO NONSTRUCTURAL RECURSION

The problem of nonstructural recursion is well knownwithin the theorem proving community [Bove
et al. 2016; Owens and Slind 2008]. In this section, we survey several previous solutions.

2.1 Nonstandard Structural Recursions

Some nonstructurally recursive functions can be rewritten in a nonstandard way to become
structurally recursive. For example, division by iterated subtraction is not structurally recursive,
because it recurses on the result of a subtraction. Structural recursions must recurse only on pattern
variables, and may not (in general) recurse on results of other function calls. In Coq’s standard
library (also Agda’s) one finds a nonstandard implementation of division, using a four-argument
function that fuses subtraction and division. This could also be written with nested recursions,
where the inner recursion is essentially the subtraction function, and the outer is the loop for
division. Either way, the functions must be fused in order to pass the structural termination check.
This is a pity, as existing theorems about subtraction cannot be applied for reasoning about this
formulation of division: it does not actually invoke subtraction. For another example, mergesort
in Coq’s standard library is expressed “using an explicit stack of pending mergings” [library Coq
2009]. The formulation is clever, and does not rely on nested recursions. But the result is barely
recognizable as a form of mergesort.

2.2 Sized Types

One technique supporting more direct expression of nonstructurally recursive functions is sized
types [Hughes et al. 1996]. For example, a much more natural formulation of mergesort in the Agda
type theory may be found in Copello et al. [2014]. The main algorithm is exactly as expected: split,
recurse, then merge. The code is written using sized types, where datatypes are additionally indexed
by static approximations of the sizes of the inhabiting data [Barthe et al. 2004a]. This method
supports compositional termination checking for programs close to the standard definitions, but it
has several costs. Users must work with sized versions of datatypes, and implementors must add
support for sized types. In the case of Coq, while there has been a recent proposal for adding sized
types, this has yet to be adopted [Chan and Bowman 2019].

2.3 Well-Founded Recursion

In constructive type theory, well-founded recursion is a widely used technique to represent non-
structural recursions as structural ones. Each function that recurses nonstructurally on some input
x is augmented with an extra argument acc : Acc R x. This acc can be viewed as evidence that
it is legal to recurse on any y which is less than x, according to relation R. From acc, one uses a
proof of R y x to obtain evidence of Acc R y, which becomes the extra argument for the recursive
call on y. This technique is implemented in theorem provers based on constructive type theory like
Coq, Agda, and Lean. It is also used in provers with different logical foundations, including Dafny
and Isabelle [Leino 2010; Nipkow et al. 2002], although without the explicit proof terms in code.
The commonly used approach of adding a “fuel” argument to a function and then recursing on that
may be viewed as a crude approximation.

In Coq, the type Acc R X is in Prop, and satisfies the so-called singleton elimination condition, a
syntactic check on the form of the definition of inductive propositions that is intended to ensure no
information can leak from that type to a computational type (cf. Gilbert et al. [2019]). This allows
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proofs of Acc R x to be erased soundly during extraction from Coq to external languages like
OCaml or Haskell. So well-founded recursion becomes a technical device to allow writing code that,
under extraction, is exactly the desired nonstructural recursion. But within Coq itself (as opposed
to via extraction), the situation with well-founded recursion is more complicated.

3 WELL-FOUNDED RECURSION IN COQ IN MORE DETAIL

In Coq, three commands exist that make writing well-founded recursions easier: Function [Barthe
et al. 2006], Program [Sozeau 2006], and Equations [Sozeau and Mangin 2019]. These commands
can only be used at the top level, not locally within another term. They generate proof obligations
for code which would otherwise not type-check in Coq due to failure of structural termination.
From such code, they use well-founded recursion to generate equivalent terms which Coq will
accept. To see how these commands work, and provide points of comparison with the proposed
new approach, let us consider how they handle a simple example.

3.1 The wordsBy Function

Haskell’s Data.List.Extra module includes a function wordsBy, which breaks a list into maximal
sublists whose elements do not satisfy a predicate p [Mitchell 2021]. For example,

wordsBy isSpace " good day "

returns ["good","day"]. The implementation of wordsby is in Figure 1. The cons clause of the
definition has two recursive calls. The first, wordsBy p tl, is structural. The second invokes
wordsBy p on a value obtained from another recursion, namely break, defined in terms of the
function span in Figure 1. This recursive call is not structural, but it can be justified by well-founded
recursion, as the value z produced by break will always have length less than or equal to tl.

wordsBy :: (a -> Bool) -> [a] -> [[a]]

wordsBy p [] = []

wordsBy p (hd:tl) =

if p hd

then wordsBy p tl

else let (w,z) = break p tl in

(hd:w) : wordsBy p z

span :: (a -> Bool) -> [a] -> ([a],[a])

span _ [] = ([], [])

span p xs@(x:xs') =

if p x

then let (r,s) = span p xs' in

(x:r,s)

else ([],xs)

break p = span (not . p)

Fig. 1. Haskell code for wordsBy and its auxiliary span and break functions.

3.2 Implementation with Program

Program Fixpoint wordsByP (l : list A)

{ measure (length l) } : list (list A) :=

match l with

| [] => []

| hd :: tl => if p hd

then wordsByP tl

else let '(w,z) := break p tl in

(hd :: w) :: (wordsByP z)

end.

Fig. 2. Using Program to generate a well-founded version of

wordsBy. Proofs of obligations not shown.

Figure 2 on the right shows an im-
plementation in Coq of a well-founded
version of wordsBy, using Program. The
{measure (length l)} annotation in Fig-
ure 2 tells Program to use the length of the
list, ordered by the less-than relation, as a
measure function to justify the recursive
calls. We omit the obvious ports of break
and span (of Figure 1). We also omit the
short proofs of the termination obligations
for the two recursive calls. A version us-
ing Function is essentially identical. By

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 3. Publication date: January 2023.



A Type-Based Approach to Divide-and-Conquer Recursion in Coq 3:5

design, the code accepted by Program (and Function) is very similar in style to what one would
usually write in Coq for structural recursion. For space reasons, we omit a version using Equations,
which supports a very different style of dependently typed programming, similar to Agda’s.

Command LoC #Aux

Function 208 2
Program 60 4
Equations 50 6

Fig. 3. The total lines of code (LoC)

and number of auxiliary functions

(#Aux) generated for wordsBy.

Function, Program, and Equations all generate valid Coq
implementations of wordsBy using well-founded recursion. As
shown in Figure 3, though, these terms are much larger than
the original starting codes, which are 8 lines with Equations,
11 with Program and Function. Also, quite a few auxiliary
function definitions are introduced. To alleviate this complex-
ity, Function and Equations both automatically derive re-
duction lemmas and induction principles, based on the pattern
of the recursion. The goal is to hide the generated code com-
pletely from the programmer, with higher-level reasoning principles.

3.3 Performance of Generated Code

Performance of the generated terms within Coq can be asymptotically slow, because the machinery
of well-founded recursion, which is erased during extraction of those terms to external languages,
is not erased within Coq. Doing so would destroy decidability of type checking [Gilbert et al. 2019].
To measure the cost of well-founded recursion within Coq, consider a family of examples, indexed
by NUM and an implementation of wordsBy, of the following form:

Definition t1 := repeat 1 NUM.

Definition t2 := repeat 0 NUM.

Eval compute in (length (WORDSBY (Nat.eqb 0) (t2 ++ t1))).

3 6 9 12 15 18 21
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benchmark size [NUM/100]

C
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]

length

smallerList

d-n-c

Fig. 4. Comparing three versions of

wordsBy: length uses the length of

the list as a measure for well-founded

decrease with Program; smallerList uses

smallerList as a custom ordering directly

on the list, again with Program; d-n-c uses

our divide-and-conquer recursion.

This tests repetition of both branches of the split on p hd.
The benchmarks all evaluate to 1.

We run these benchmarks with three instantiations
of WORDSBY. The first is the one from Figure 2, which
uses length as a measure. The second is the same, ex-
cept that is uses a custom ordering smallerList, of type
list A -> list A -> Prop, to compare lists struc-
turally without any measure function. The third is the
version using our divide-and-conquer recursion, which
we present in Section 5.1 below.

For each version of wordsBy, Figure 4 shows the me-
dian time of three Coq evaluations for each benchmark.
The length version is quadratic in NUM, while the almost
coinciding versions smallerList and d-n-c are linear
(with d-n-c just slightly slower). Not shown, Function
and Equations also exhibit quadratic running time. The
source of the quadratic behavior is that the proof of well-
foundedness of less-than in the Coq standard library eval-
uates themeasure function on the input for each recursive
call. Careful rewriting of that proof yields a version that also runs in linear time.

3.4 Discussion

We hope to have convinced the reader that the situation with well-founded recursion in Coq, and
by extension similar theories, is somewhat complicated. For efficient extracted code, the technique
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relies on some special typing principles that allow proofs of well-foundedness to be erased upon
extraction; but such such erasure is not possible within Coq [Gilbert et al. 2019]. The standard
approach to well-founded recursion using measure functions can be asymptotically slow; this can
be corrected using a custom ordering, at the cost of an extra well-foundedness proof, or by carefully
rewriting the underlying combinator for well-founded recursion with measures. Automatically
generated terms for well-founded recursion are large, requiring further generation of reduction
lemmas and custom induction principles to be usable.

The rest of this paper proposes an alternative, whichwe call divide-and-conquer recursion. Instead
of the structural recursion of CIC, it makes use of the powerful, and compositional, termination
properties imposed directly by typing in the Calculus of Constructions. It can be appliedwithin terms
(not just as top-level commands), does not blow up code at all, leads to execution with the expected
asymptotic complexities without any tweaking, and does not require any special typing features like
singleton elimination. Instead of writing proofs about decrease of arguments, one programs against
an interface, with no dependent types, that enforces termination. Our approach is less general than
well-founded recursion, as it applies just to the specific – but inarguably very important – class of
divide-and-conquer algorithms. We do not have an independent characterization of this class, but
will hope to convince the reader it has broad scope through the diversity of examples (Section 5).

4 THE INTERFACE FOR DIVIDE-AND-CONQUER RECURSION

In this section, we describe the interface our development provides to programmers for writing
divide-and-conquer recursions. The implementation is explained in Section 6. Our approach is
within a long line of work using ideas from universal algebra and category theory to describe
inductive datatypes and their recursion principles (cf. [Cockett and Spencer 1992; Hagino 1987;
Traytel et al. 2012]). We begin with a short tutorial.

4.1 The Algebraic Approach to Datatypes

The simplest form of algebras, namely � -algebras for functor � , are categorically morphisms from
� - to - , for carrier object - . From a programming perspective, an � -algebra with carrier - is a
function from inputs of type � - to a result of type- . � is called the signature functor for the datatype.

Inductive ListF (A X : Set) : Set :=

| Nil : ListF A X

| Cons : A -> X -> ListF A X.

Definition lengthAlg (A : Set)

(d : ListF A nat) : nat :=

match d with

Nil => 0

| Cons x xs => 1 + xs

end.

As an example, the ListF type shown on the right is
the signature functor for lists, parametrized by the
type A of elements. This is similar to the standard
definition of lists in functional languages, except
that the second argument of Cons is of type X rather
than ListF X. The lengthAlg definition is an exam-
ple (ListF A)-algebra in Coq. This algebra is used
to compute the length of a list. Note that the Cons
case in lengthAlg type checks because xs has type
nat. For good introductions to the functorial view of
datatypes in functional programming, see Swierstra
[2008] and Bird and de Moor [1997].

Once one has an algebra of type � - → - , it can be converted, by a function traditionally called
fold, to a catamorphism of type `� → - . Here, `� is the least fixed-point of � , which corresponds
to the actual datatype of interest. Using this encoding, ` (ListF A) represents lists with elements of
type A. The catamorphism applies the algebra throughout the input to compute a result of type - .
In our development, the type list A from Coq’s standard library is distinct from ` (ListF A),

which we denote as List A. We include conversion functions between these types: toList goes
from list to List, and fromList does the reverse. To use our approach, one first converts from
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list to List, and then applies our recursion scheme. From a user’s perspective, List A is just used
behind the scenes to do divide-and-conquer recursion on a standard list A. Usually our recursions
can compute a list as their output directly, and no conversion back from List is needed.
The algebraic approach to datatypes uses a single constructor called in, of type � `� → `� .

Specialized to ListF A, this function converts a ListF A (List A) to a List A. In other words, in
takes a ListF A data structure where the second argument of Cons is indeed a list, namely the tail;
and produces a list. It thus captures in one function the usual nil and cons constructors.

4.2 Algebras for Divide-and-Conquer Recursion

Algebras in our development are more complex than the basic � -algebras just described. Where a
(ListF A)-algebra with carrier - is given an input of type ListF A - and produces a value of type
- , our divide-and-conquer algebras are equipped with an additional toolbox of inputs that we call
a recursion universe, following Stump et al. [2020]. Furthermore, we have two different kinds of
algebras: Alg is for outermost recursions like wordsBy, and SAlg is for subsidiary (inner) recursions
like span. Alg and SAlg are similar, but only subsidiary algebras are given abstract versions of the
datatype constructors. Section 6 discusses the reason for this difference.
This section presents the interfaces for Alg and SAlg by going through the toolbox of inputs

each is given. Both kinds of algebra generalize the type of the carrier- from just Set to Set → Set.
The carrier must be a functor satisfying the usual functor identity law. We denote this functoriality
requirement Functor - . Thus, both SAlg and Alg have kind (∗ ⇒ ∗) ⇒ ∗, where the input of kind
* ⇒ ∗ is the carrier for the algebra.

Both Alg and SAlg are recursive types of a special form, called positive-recursive: every recursive
occurrence in such a type appears in the domain part of an even number of function types [Mendler
1991, Section 2.1]. Section 6.1 details how the fixed-points of these types are built. For now, an
important intuition is that both kinds of algebras define their own universe for recursion, whose
elements are of an abstract type R. Recursive calls are allowed only on data of type R.

Interface for subsidiary recursion. A subsidiary algebra defines a recursion that may be called
by an outer recursion, which we call the parent recursion. The type for subsidiary algebras with
carrier X is defined as:

SAlgF (X :: ∗ ⇒ ∗) := ∀P :: ∗. ∀R :: ∗.

(R → P)
︸   ︷︷   ︸

up

→ (FoldT SAlg R)
︸               ︷︷               ︸

sfo

→ (� R → P)
︸      ︷︷      ︸

abstIn

→ (R → X R)
︸       ︷︷       ︸

rec

→ � R
︸︷︷︸

d

→ X P

Each of the components of this type provides a piece of the toolbox that allows a subsidiary algebra
to interact with its recursion universe R, as well as the universe of its parent recursion P:

• P, the abstract type for the parent recursion.
• R, the abstract type for this subsidiary recursion.
• up of type R → P, for sending data from the current recursion up to the parent recursion.
• sfo of type FoldT SAlg R, for spawning yet a further subsidiary recursion (subsidiary to
this one); we will consider the definition of FoldT shortly. Note that SAlg is used recursively
here; we will discuss this further when defining FoldT.

• abstIn of type � R → P, this is an abstracted version of the datatype’s (sole) constructor in.
Recall that in has type � `� → `� . In the type for abstIn, the first `� is abstracted to R, and
the second to P. Thus, applying this abstracted constructor to data in the current recursion
universe constructs data in the parent recursion universe.
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• rec of type R → X R, used to make recursive calls on values of type R. Note that the carrier X
is applied to R here. This allows data produced by a recursive call to be eligible for a further
recursive call with this algebra.

• d of type � R. We call this the subdata structure. It presents a value of the algebra’s datatype
(unfolded from `� to � `� ), but using R for subdata. This means that the subdata are eligible
for recursive calls using rec.

Supplied with these inputs, a SAlgF Xwill produce an output of type X P. Please note the subtlety
here: the carrier X is applied to the abstract type P of the parent algebra, as opposed to the abstract
type R of the current algebra. This is what will enable outer recursions to recurse on the results of
subsidiary recursions, and what necessitates the generalization of the kind of the carrier to ∗ → ∗.

Definition of FoldT. The sfo component of the SAlgF toolbox has the type FoldT SAlg R,
where R is the abstract type of the recursion. The definition is

FoldT (A :: KAlg) (R :: ∗) := ∀- : ∗ ⇒ ∗. Functor X → A X → R → X R

The parameter A is the type of algebra to use. The instantiation (FoldT SAlg R) unfolds to:

∀- : ∗ ⇒ ∗. Functor X → SAlg X → R → X R

Thus, the sfo : FoldT SAlg R component of a subsidiary algebra can be used to recurse on any R
from the current recursion, using a further subsidiary algebra, to obtain a result of type X R, for any
functorial X. Again, the use of R in the result type of FoldT is critical here: invoking a subsidiary
recursion produces data upon which the current recursion may legally recurse.

For the implementation described in Section 6, it will be crucial that SAlg is a positive-recursive
type. To see this, note that the occurrence of SAlg is negative in SFoldT above, as it is in the domain
part of just one function type. In SAlgF itself, however, FoldT SAlg R is the type of an input. Thus,
in the definition of a subsidiary algebra, the sole occurrence of SAlg is in the domain part of two
function types. Hence, SAlg is positive-recursive.

Interface for outer recursion. The type of algebras for outer recursion is Alg X, where again X is
the carrier of type KAlg. These algebras are built from functions that take similar arguments to
those of subsidiary algebras, except that there is no parent algebra:

AlgF (X :: ∗ ⇒ ∗) := ∀R :: ∗. (FoldT Alg R)
︸             ︷︷             ︸

fo

→ (FoldT SAlg R)
︸               ︷︷               ︸

sfo

→ (R → X R)
︸       ︷︷       ︸

rec

→ � R
︸︷︷︸

d

→ X R

Accordingly, an outer algebra returns a value of type X R and there are no up or abstIn inputs, as
these only make sense in the presence of a parent recursion universe. Finally, in order to implement
this interface, we add a function fo to fold an Alg, in addition to sfo for folding an SAlg. The
inclusion of fo makes an outer algebra a positive-recursive type, like SAlg. To summarize the
components required to build an outer algebra:

• R, the abstract type for this recursion.
• fo of type FoldT Alg R, for spawning an inner recursion using an Alg instead of an SAlg.
• sfo of type FoldT SAlg R, for spawning subsidiary recursions.
• rec of type R → X R, for making recursive calls.
• d of type � R, the subdata structure.

Additional definitions. Several functions will be helpful in our upcoming discussion. Their signa-
tures are in Figure 5. Given a functor � , our development provides a type, Dc, for data supporting
divide-and-conquer recursion using the two algebras discussed above.
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inDc : � Dc → Dc

toList : list A → List A

fromList : List A → list A

fold : FoldT Alg Dc

sfold : FoldT SAlg Dc

rollSAlg : ∀X :: ∗ → ∗. SAlgF SAlg X → SAlg X

unrollSAlg : ∀X :: ∗ → ∗. SAlg X → SAlgF SAlg X

rollAlg : ∀X :: ∗ → ∗. AlgF Alg X → Alg X

unrollAlg : ∀X :: ∗ → ∗.; Alg X → AlgF SAlg X

out : ΛR :: ∗. FoldT SAlg R → R → F R

Fig. 5. Signatures of auxiliary functions used in Section 5.

The function inDc is used as the (sole)
categorical constructor for type Dc. Spe-
cializing � to ListF A in inDc allows us to
define the constructors mkNil and mkCons
for List A, for example. We can then use
these constructors to define functions to
convert from list A to List A and back
(fromList and toList); see Section 6.4
for automatic derivation of boilerplate like
this. Our examples will also use the sfold
and fold functions to fold outer and sub-
sidiary algebras over values of Dc, respec-
tively. To create algebras and subsidiary
algebras from values of AlgF and SAlgF,
our development provides the functions
rollAlg and rollSAlg. Intuitively, such
terms corresponds to a one-step unrolling of Alg and SAlg. The final function we will use below is
out, which uses the sfo component of a subsidiary algebra to convert R values into F R values via
a trivial subsidiary recursion. Subsidiary algebras can use out to perform nested pattern-matching
on a term of type R, while still preserving the possibility of recursing on subdata.

5 EXAMPLES OF PROGRAMS USING THE DIVIDE-AND-CONQUER INTERFACE

This section presents several example programs that use the interface for divide-and-conquer
recursion described in the previous section. We will elide the obvious proofs of functoriality for the
carriers of the algebras for these examples. We include Haskell code to help clarify some of the
algorithms, and for comparison with the Coq versions which are the contribution of the section.

5.1 Implementing wordsBy

Definition SpanF(X : Set) : Set := list A * X.

Definition SpanSAlg (p : A -> bool)

: SAlg (ListF A) SpanF :=

rollSAlg (fun (P R : Set)

(up : R -> P)

(sfo : FoldT (SAlg (ListF A)) R)

(abstIn : ListF A R -> P)

(span : R -> (list A * R))

(xs : ListF A R) =>

match xs return SpanF P with

| Nil => ([], abstIn xs)

| Cons x xs' =>

if p x

then let (r,s) := span xs' in (x :: r, up s)

else ([], abstIn xs)

end).

Fig. 6. Subsidiary algebra for span

Our first example is the wordsBy func-
tion from Section 3.1. The first step is to
implement span (Figure 1) using the SAlg
shown in Figure 6. As a subsidiary alge-
bra, this program uses two abstract types
R and P corresponding to its recursion uni-
verse and that of its parent. In order to
allow wordsBy to recurse on the second
component of the pair returned by span

(via break), we need to ensure that this
part of the pair is typed at P. Note that the
only way to get a value of type Pwithin the
body of SpanSAlg is to invoke either up
and abstIn. Thus, the second component
of all the result values contains an applica-
tion of one of these components. The calls
to abstIn are well-typed because xs is the
subdata structure for the algebra, of type ListF A R, which is exactly the input type for abstIn.
Similarly, observe that the type of (local variable) span guarantees it can only be applied to subdata
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of xs. Modulo these conversion functions, the body of SpanSAlg is quite similar to the Haskell
definition in Figure 1.

Definition spanr {R : Set}

(sfo : FoldT (SAlg (ListF A)) R)

(p : A -> bool)(xs : R) : SpanF R :=

sfo SpanF SpanFunctor (SpanSAlg p) xs.

Definition breakr {R : Set}

(sfo : ListSFoldT A R) p :=

spanr sfo (fun x => negb (p x)).

Fig. 7. Functions based on SpanAlg

As a convenience when invoking SpanSAlg
from another recursion, Figure 7 defines helper
functions spanr and breakr. The type of the
sfo parameter of spanr says that sfo can be
used to initiate recursions on values of type
R using SAlgs (over functor (ListF A)). The
definition of spanr calls sfo to initiate a recur-
sion on xs using SpanSAlg. This helper func-
tion hides the argument SpanFunctor, which
witnesses that the carrier SpanF of SpanSAlg
is indeed a functor.

Definition WordsByAlg(p : A -> bool)

: Alg (ListF A) (Const (list (list A))) :=

rollAlg

(fun (R : Set)

(fo : FoldT (Alg (ListF A)) R)

(sfo : FoldT (SAlg (ListF A)) R)

(wordsBy : R -> (list (list A)))

(xs : (ListF A) R) =>

match xs return list (list A) with

| Nil => []

| Cons hd tl =>

if p hd then

wordsBy tl

else

let (w,z) := breakr sfo p tl in

(hd :: w) :: wordsBy z

end).

Definition wordsBy (p : A -> bool)

(xs : list A) : list (list A) :=

fold _ _ _ (WordsByAlg p) (toList xs).

Fig. 8. Algebra for wordsBy

Using breakr, we can write the Alg for
wordsBy shown in Figure 8. The algebra is
given a function sfo of type FoldT SAlg R

for initiating subsidiary recursions, which it
passes to breakr. The call to breakr then has
type list A * R, since the carrier of SpanSAlg
is SpanF, and FoldT says that sfo will return
a result of type X R for an algebra with carrier
X. The code in Figure 8 is otherwise very sim-
ilar to the starting-point code of Figure 1. We
have chosen to implement this function as an
Alg, and to have it return a list A. Thus, the
carrier of WordsByAlg is the constant functor
that always returns list A, Const (list A).

With this algebra in hand, we can define the
implementation of wordsBy on the standard
type of lists from the Coq prelude, list A. This
function first converts the input argument List
and then applies WordsByAlg using the fold

function from Figure 5. Thus, the List A type
and the machinery for divide-and-conquer re-
cursion are completely internal to wordsBy.

5.2 Nested Recursion

Nested recursion allows nested calls to a recursive function, as in f (f x) [Krauss 2010]. Our
scheme can be seen as generalizing this pattern, so that recursive calls of the form f (g x) are
allowed. Here, g could be f, or another recursively defined function, as long as it returns only
subdata of the original argument of f. A simple example is the following (total) program from
Krstić and Matthews [2003], which recursively reduces its input argument to zero:

zeroOut x = if x == 0 then 0 else zeroOut (zeroOut (x-1))

We can encode this function via the (subsidiary) algebra in Figure 9, which uses the identity
functor as its carrier. Defining zeroSAlg as an SAlg equips it with two key operations: up and
abstIn. The base case uses abstIn to inject Zero' into the parent universe, while the recursive
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Definition zeroSAlg : SAlg NatF Id :=

rollSAlg (fun P R up sfo abstIn zero n =>

match n with

| Zero' => abstIn Zero'

| Succ' p => up (zero (zero p))

end).

Definition ZeroOut (n : Nat) : Nat :=

sfold NatF _ _ zeroOutAlg n.

Fig. 9. Nested-recursive zero function as an SAlg

case uses up to do the same for the results of the nested recursive call. ZeroOut uses sfold to apply
zeroSAlg, for the final function.
As an example that is rejected by our typing discipline, consider the following (partial) variant

of zeroOut

oneOut x = if x == 0 then 1 else oneOut (oneOut (x-1))

This function is undefined on all nonzero inputs, as oneOut 1 ≡ oneOut (oneOut 1). When
attempting to write a corresponding algebra using our recursion scheme, the offending call to
abstIn (Succ' Zero') in the base case is (rightly) rejected, because the argument has the type
NatF (NatF R), and not the expected type of inputs to abstIn, namely NatF R.

5.3 Higher-Order Recursion

Higher-order recursive functions feature occurrences of the recursive function that are not fully
applied. The following is an example, as mirror is used on the right-hand side as an argument to
map, instead of being applied to an argument:

data Tree a = Node a [Tree a]

mirror (Node a ts) = Node a (reverse (map mirror ts))

Definition mirrorAlg : SAlg TreeF Id :=

rollSAlg (fun P R up sfo abstIn mirr t =>

match t with

| NodeF a xs =>

abstIn (NodeF a (map mirr (rev xs)))

end).

While mirror can also be defined in Coq
using its Fixpoint command, this is only pos-
sible because the termination checker is smart
enough to unfold the definition of map to check
for structural recursion. If we mark map as
opaque or switch the order of map and rev, the
termination check fails. Our interface, however,
is able to also handle both of these scenarios.

5.4 Combinator-Based Run-Length Encoding

Run-length encoding is a basic data-compression algorithm for lists in which maximal sequences
of = occurrences of element 4 are summarized by the pair (=, 4) [Salomon and Motta 2009]. In
this section, we demonstrate a concise implementation of run-length encoding using a recursion
combinator we call mapThrough. The implementation also makes use of spanr from Section 3.1, a
nice demonstration of the benefits of compositionality that our approach enjoys over nonstandard
structural recursion.

mapThrough :: (a -> [a] -> (b, [a])) -> [a] -> [b]

mapThrough f [] = []

mapThrough f (a:as) = b : mapThrough f as'

where (b, as') = f a as

Fig. 10. mapThrough in Haskell
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rle :: Eq a => [a] -> [(Int,a)]

rle = mapThrough compressSpan

where compressSpan hd tl =

let (p,s) = span (== hd) tl in

((1 + length p, hd), s)

Context {A : Set}. (* Type of list elements *)

Context eqb : A -> A -> bool. (* Equal As *)

Definition compressSpan : mappedT A (nat * A) :=

fun R sfo hd tl =>

let (p, s) := spanr sfo (eqb hd) tl in

((1 + length p, hd), s).

Definition RleAlg := MapThroughAlg compressSpan.

Definition rle (xs : list A) : list (nat * A) :=

fold _ _ _ RleAlg (toList xs).

Fig. 12. Run-length encoding in Haskell and using divide-and-conquer recursion in Coq.

The Haskell implementation of the mapThrough combinator is given in Figure 10. It is similar to
the standard map operation on lists, except that the function being mapped takes both the head
and tail of the list, and returns a pair of an element to include in the output list, and a suffix of the
list on which the recursive mapThrough should continue. The Haskell library Data.List.Extra

defines this function with the name repeatedly [Mitchell 2021]. To write mapThrough using
divide-and-conquer recursion, we use this type for the function that will be applied to the input list:

Definition mappedT(A B : Set) : Set :=

forall(R : Set)(sfo : ListSFoldT A R), A -> R -> B * R.

This is similar to the type a -> [a] -> (b,[a]) from the Haskell version, except that the
occurrences of [a] have been replaced with the abstract type R. This is a type-based way of
expressing the fact that mapThrough expects the function it is given to return only sublists of its
input list. Accordingly, mapThrough will be able to recurse on the second component. In order to
manipulate terms of the abstract type R, functions of type mappedT are also given a function, sfo,
for initiating subsidiary recursions. This function will be supplied by mapThrough.

Definition MapThroughAlg {B : Set}

(f : mappedT A B)

: Alg (ListF A) (Const (list B)) :=

rollAlg (fun R fo sfo mapThrough xs =>

match xs with

| Nil => []

| Cons hd tl =>

let (b,c) := f R sfo hd tl in

b :: mapThrough c

end).

Definition mapThrough {B : Set}

(f : mappedT A B)

: List A -> list B :=

fold _ _ _ (MapThroughAlg f).

Fig. 11. The MapThroughAlg algebra and the

mapThrough function.

A Coq implementation of mapThroughAlg
that uses this definition is shown in Figure 11.
The code is similar to the Haskell version
shown in Figure 10, though the function f being
mapped must be also be applied to the abstract
type R and fold function sfo. For simplicity,
we choose to define MapThroughAlg as an Alg

rather than an SAlg, and to simply return a
list B (as before, we use a constant functor
for the carrier of the algebra). Inside the body of
mapThroughAlg, we have that b : B and c : R,
so the algebra may indeed make a recursive call
by applying mapThrough : R -> list B to c.
The Haskell implementation of run-length

encoding simply maps a compression function
through the input list, as shown on left side of
Figure 12. The compressSpan helper function
gathers up all elements at the start of the tail
tl that are equal to the head hd, using (== hd) to test for equality with hd. This prefix is returned
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as p, with the remaining suffix as s; the function then returns the pair (1 + length p, hd) to
summarize hd : p.

The right side of Figure 12 presents an analogous implementation in Coq which uses our divide-
and-conquer interface. Our helper function compressSpan has type mappedT A (nat * A),
as required by mapThrough. The code for mapThroughAlg invokes compressSpan using the sfo
function over the recursion universe of mapThroughAlg. compressSpan applies this function to
the tail of the list tl to extract a suffix s upon which mapThrough can recurse further. The algebra
RleAlg is then obtained by supplying compressSpan to MapThroughAlg The final implementation
of rle is obtained using fold and the toList conversion function.

Definition mappedT(A B : Set) : Set :=

A -> forall (xs : list A),

B * sig (fun xs' : list A =>

length xs' <= length xs).

Program Fixpoint mapThroughWf {A B : Set}

(f:mappedT A B)(xs : list A)

{ measure (length xs) } : list B :=

match xs with

| [] => []

| hd :: tl =>

let '(b, exist _ c pf) := f hd tl in

b :: mapThroughWf f c

end.

Fig. 13. A well-founded version of mapThrough defined

via Program.

5.4.1 Comparison with Well-Founded Recur-

sion. It is straightforward to use Program to
obtain an implementation of mapThrough that
uses well-founded recursion. To see how the
intertwining of proof terms in a well-founded
recursion impacts combinator programming,
consider the implementation of mapThrough
shown in Figure 13 (mapThroughWf). The
big difference is that this implementation
must change the type of functions that will
be mapped through, so that they now pro-
duce a proof that the output list (on which
mapThroughWf will then recurse) has length
less than or equal to the length of the input list.
This proof is then used to satisfy the proof obli-
gation for the recursive call to mapThroughWf.

From the 13 line program shown in Figure 13,
Program generates 270 lines of code using well-
founded recursion. This expansion is worse than we saw for wordsBy in Section 3. Part of the
blow-up is due to the fact that tactic-based proofs, such as one would naturally wish to write for
the obligations that arguments decrease at recursive-call sites, can generate large proof terms. Of
course, we can hide these using Coq’s abstract tactical, or by manually introducing intermediary
lemmas; but the proofs will still remain in the code in some form. Another source of blow-up is
packing and unpacking the components of the dependent pair produced by the mapped function.

5.5 Harper’s Regular-Expression Matcher

Harper’s matcher is a continuation-based matcher for regular expressions [Harper 1999]. It has
been considered as a challenge problem for termination in a number of previous works [Bove
et al. 2016; Korkut et al. 2016; Owens and Slind 2008; Xi 2002]. Bove et al. [2016] sketch a solution
in Coq, and conjecture that there is no easy way to solve the problem without dependent types.
Surprisingly, Stump et al. [2020] found such a solution, using the Cedille prover. Cedille’s theory is
quite different from Coq’s, so it is a further surprise that their code can be ported to Coq using our
divide-and-conquer recursion scheme. Like the original, this port does not use dependent types or
reason about decrease of arguments.

Figure 14 presents the implementation of Harper’s matcher as an Alg. We define K T as the type
for a continuation expecting an input of type T, and MatchT as the type for a function expecting
such a continuation. The algebra defining the matcher has the functorial carrier MatcherF. There
is an inner recursion, matchi, on the regular expression; and an outer recursion, matcherAlg, on
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Definition K(T : Set) : Set := T -> bool.

Definition MatchT(T : Set) := K T -> bool.

Definition matchi(T : Set)(matcher : T -> Regex -> MatchT T)

: Regex -> Ascii.ascii -> T -> MatchT T :=

fix matchi (r : Regex) : Ascii.ascii -> T -> MatchT T :=

match r with

NoMatch => fun c cs k => false

| MatchChar c' => fun c cs k =>

if (Ascii.eqb c c') then k cs else false

| Or r1 r2 => fun c cs k =>

(matchi r1 c cs k) || (matchi r2 c cs k)

| Plus r => fun c cs k =>

matchi r c cs

(fun cs => (k cs) || (matcher cs (Plus r) k))

| Concat r1 r2 => fun c cs k =>

matchi r1 c cs

(fun cs' => matcher cs' r2 k)

end.

Definition MatcherF(X : Set) := Regex -> MatchT X.

Definition matcherAlg : Alg (ListF Char) MatcherF :=

rollAlg

(fun R fo sfo matcher s =>

match s with

Nil => fun r k => false

| Cons c cs => fun r k =>

matchi R matcher r c cs k

end).

Fig. 14. Harper’s matcher as an Alg, in our divide-and-conquer recursion scheme.

the string. The inner recursion matchi recurses through the given regular expression, modifying
the continuation k as it goes. This continuation is invoked on the suffix of the string to be matched,
after a prefix is found satisfying the regular expression. Interestingly, matchi is a simple structural
recursion on the regular expression (i.e., not a subsidiary recursion).
Our approach is needed in defining the outer recursion, to allow the matcher local variable of

matcherAlg to be passed as an argument to matchi, in the Cons case of matcherAlg. Furthermore,
this matcher can be invoked with an input of type R, to produce a result of type K R -> bool. In
matchi, this function is pulled into continuations when recursing into regular expressions, some-
thing that is not allowed with structural recursion. It is worth noting that actually, as challenging
as this example has been considered to be in previous works, it does not need the full power of
our approach: the inner recursion does not need the ability to construct new data upon which the
outer recursion will recurse, and indeed can just be a simple structural recursion.
Bove et al. [2016] describe an implementation of Harper’s matcher in Coq, using dependent

types for the type of the continuation, and a merged version of the inner and outer recursions. For
this merged code, Program is used to implement lexicographic decrease of the pair of the regular
expression and the string. In contrast, our approach is able to keep the functions separate, and for
matchi to use structural recursion on the regular expression. The outer recursion matcherAlg does
need to use our scheme, in order to support embedding recursive calls to matcher into continuations
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Definition MergeSortAlg

: Alg (ListF A) (Const (A -> list A)) :=

rollAlg (fun R fo sfo mergesort xs a =>

match xs with

| Nil => [a]

| Cons hd tl =>

let (ys, zs) := splitr sfo tl in

merge (mergesort ys a)

(mergesort zs hd)

end).

Definition mergeSortH (xs : List A) :=

fold _ _ _ MergeSortAlg xs.

Definition mergeSort (xs : list A)

: list A :=

match xs with

| [] => []

| hd :: tl => mergeSortH (toList tl) hd

end.

Definition SplitF (X : Set) : Set := X * X.

Definition SplitAlg

: SAlg (ListF A) SplitF :=

rollSAlg (fun P R up sfo

abstIn split xs =>

match xs with

| Nil => (abstIn Nil, abstIn Nil)

| Cons hd tl =>

match (out (ListF A) sfo tl) with

| Nil =>

(abstIn (Cons hd tl), abstIn Nil)

| Cons hd' tl' =>

let (ys, zs) := split tl' in

(abstIn (Cons hd ys),

abstIn (Cons hd' zs))

end

end).

Definition splitr {R : Set}

(sfo: ListSFoldT A R) : R -> SplitF R :=

sfo SplitF FunSplitF SplitAlg.

Fig. 15. An implementation of mergesort and its subsidiary split function.

inside matchi. Once again, we do not need to use dependent types or any other technique to prove
that strings are smaller when matcher is invoked, relying instead on the typing of CC to enforce
this. This keeps the types simpler and eliminates explicit reasoning about termination.

5.6 Mergesort

Figure 15 gives our implementation of mergeSort, using a helper function mergeSortH, which
invokes an algebra MergeSortAlg. The outermost mergesort function expects a regular list A. If
this list is nonempty, it peels off its head and passes it as an argument to mergeSortH, which starts
the initial outer recursion. This function first evenly divides the input list into two lists, which
are each recursively processed. This continues until each recursive branch has only the additional
element that was passed in. It then constructs a singleton from that argument, and the resulting
lists are merged on their way up, as expected. Since mergeSortH has return type list A, we are
able to reuse the implementation of merge in Coq’s standard library to combine the results of the
recursive calls.
Because we recurse on values obtained from splitting the input list, we write split as the

subsidiary algebra SplitAlg that appears on the right of Figure 15. Since the parent recursion
wishes to recurse on both the outputs of this algebra, SplitAlg has the carrier SplitF. It thus
returns a value of type P * P. When splitting a list, we try to match two levels down into it, in
order to find the first two elements (if there are that many). Note that we cannot do this nested
pattern matching directly, however, as the type of the input list xs is ListF A R. Thankfully, we are
able to deploy the out helper function described in Section 4 to convert the tail of the list from type
R to type ListF A R, on which we can then perform the second pattern match. The two elements
are then used to construct the left and right components of the result pair, respectively, via an
application of abstIn, which injects both lists back into P, the parent recursion universe.
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Context A : Set. (*Type of list elements *)

Context ltA : A -> A -> bool. (* Ordering *)

Definition PartF (X : Set) : Set :=

A -> (X * X).

Definition PartSAlg : SAlg (ListF A) PartF :=

rollSAlg (fun P R up sfo

abstIn partition d bound =>

match d with

| Nil => (abstIn d, abstIn d)

| Cons x xs =>

let (l, r) := partition xs bound in

if ltA x bound then

(abstIn (Cons x l), up r)

else

(up l, abstIn (Cons x r))

end).

Definition partr {R : Set}

(sfo : ListSFoldT A R)

: R -> A -> R * R :=

sfo PartF FunPartF PartSAlg.

Definition QuicksortAlg

: ListAlg A (Const (list A)) :=

rollAlg (fun R fo sfo qsort xs =>

match xs with

| Nil => []

| Cons p xs =>

let (l,r) := partr sfo xs p in

qsort l ++ p :: qsort r

end).

Fig. 16. Algebras for quicksort and partitioning a list based on a bound.

What would go wrong if one attempted to recurse improperly inside MergeSortAlg? Our typing
discipline ensures that the results of splitalg are safe to recurse on, as the type of abstIn ensures
the results of SplitAlg stay inside the recursion universe of MergeSortAlg. So we would get a
type error if we tried break out of this universe; e.g., by returning Cons hd (Cons hd ys) for the
first component. This is like the hypothetical oneOutAlg from Section 5.2. Alternatively, suppose
one tried to call mergesort mkNil A in the Nil case of MergeSortAlg, thus causing the algebra
to diverge. This is also prevented by our typing discipline, since the typing of the local variable
mergesort provided by our interface ensures it can only be applied to inputs of type R, and mkNil A

does not have this type.

5.7 �icksort

For our final example, we show (functional) quicksort, to see how our approach deals with quick-
sort’s partitioning of the input list into a one list with elements less than some bound, and another
with elements greater than or equal to the bound. The algebra for this is shown on the left of
Figure 16. As with SplitAlg above, PartitionAlg uses abstIn to construct data of the abstract
type P of the parent recursion from a value of ListF A R. In contrast to SplitAlg, however, it only
does so for one component of the result pair, depending on the result of the bound comparison. The
algebra uses up to inject the other, unchanged result of the recursive call into the parent universe.
Besides these calls to abstIn and up, the code is exactly as expected. QuicksortAlg then has the
desired form: partition, recurse, and combine the results using list concatenation.

5.8 Discussion

Wehave seen a diverse group of example programswritten using our interface, all of whichmake use
of nonstructural recursion. These examples cover a range of interesting recursion patterns from the
literature [Bove et al. 2016], including nested recursion, higher-order recursion, and recursive calls
in a continuation. Our approach provides functions to enable subsidiary recursions to propagate
values, even newly constructed ones, to an outer recursion, which may then recurse on them. This
is all without any use of dependent types in the definition of clients, as termination is guaranteed
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Fig. 17. Comparing implementations of mergesort and quicksort. d-n-c uses our divide-and-conquer recur-

sion; Program uses program; and sort is the implementation from Coq’s standard library.

by the typing rules of CC itself. These examples can also be written using well-founded recursion,
by placing proofs certifying arguments decrease at each recursive call site.for the mirror example,
As we saw in Section 5.4.1, such proofs are inserted by Function, Program, and Equations into
the definitions of the functions. Of course, our approach also introduces some syntactic overhead in
the resulting programs, as subsidiary algebras must call abstIn and up functions to communicate
data up to outer recursion in a way that preserves the ability to recurse. Outside of these conversion
functions, however, the resulting programs look quite similar to their expected implementations.
The performance of functions written using our interface appears compatible with the expected
asymptotic complexity of $ (= log=), and is comparable to that of versions written using well-
founded recursion. Figure 17 presents times for mergesort and quicksort on pseudo-randomly
generated lists, using the two approaches. As recursive calls are made on lists of exponentially
decreasing size, the asymptotically suboptimal performance for well-founded recursion that we
noted in Section 4 above is not observable.

6 IMPLEMENTING THE INTERFACE FOR DIVIDE-AND-CONQUER RECURSION

Having introduced our interface for divide-and-conquer recursion, and demonstrated it through
a diverse group of examples, we turn to the intricacies of its implementation in Coq. Recall that
the types Alg and SAlg of the interface are positive recursive. If we attempted to define them as
inductive types within Coq, we would get an error, as Coq (and Agda, and Lean) restrict inductive
types to satisfy a requirement known as strict positivity: in the type ) of any argument to any
constructor of the datatype, the inductive type may not be used in the domain part of an arrow
type in ) . The first technical problem is how to take a fixed-point for positive functors within Coq.

6.1 Retractive-Positive Recursive Types of Ma�hes

Coquand and Paulin [1988] proved that full positive-recursive inductive types are incompatible
with Coq’s type theory, although they can be recovered by some subtle changes to the type
theory [Blanqui 2005]. Here, we instead make use of an idea of Matthes, which gives a weakened,
but still sufficient, form of positive-recursive types, without requiring any changes to the underlying
type theory [Matthes 2009]. We summarize Matthes’s approach here. He did not introduce a name
for his weakened form of positive-recursive type; we propose retractive-positive recursive types,
because, as we will see, they make the unfolding of the recursive type Mu a retraction of Mu. Note
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that the point of using a recursive type instead of another impredicative encoding is to ensure that
unfolding the recursive type can be done in constant time.
We start with a functor F : Set -> Set. As a functor, F comes with an fmap function of type

forall A B : Set, (A -> B) -> F A -> F B

We require only that fmap satisfy the identity-preservation law:

fmapId : forall (A : Set)(d : F A), fmap (fun x => x) d = d

We do not require preservation of compositions. Ideally, we would like to use this definition:

Inductive Mu' : Set := mu' : F Mu' -> Mu'.

This formulation is exactly what is used in many approaches to modular datatypes in functional
programming, like Swierstra [2008]. But it is (rightly) rejected by Coq, as instantiations of F that
are not strictly positive would be unsound.

Inductive Mu : Set :=

mu : forall (R : Set), (R -> Mu) -> F R -> Mu.

Definition inMu(d : F Mu) : Mu :=

mu Mu (fun x => x) d.

Definition outMu(m : Mu) : F Mu :=

match m with

| mu A r d => fmap r d

end.

Lemma outIn(d : F Mu) : outMu (inMu d) = d.

Fig. 18. Derivation of retractive-positive recursive types

Figure 18 defines Mu as a strictly posi-
tive approximation to this ideal Mu', in the
manner proposed by Matthes. Instead of
taking in F Mu, the constructor mu accepts
an input of type F R, for some type R with
a function of type R -> Mu. Impredicativ-
ity is essential, as we instantiate R with Mu

itself in the definition of inMu. Mu is a legal
inductive type in Coq, because Mu occurs
strictly positively in the type for mu.
Figure 18 lists functions inMu and

outMu, and a theorem outIn that they
make F Mu a retraction of Mu: the compo-
sition of outMu and inMu is (extensionally)
the identity on F Mu. The reverse compo-
sition cannot be proved to be the identity, because of the basic problem of noncanonicity that
arises with this definition. For a simple example, suppose we instantiate F with ListF A (from
Section 4). Our development actually uses a different type that wraps F, but using ListF A suffices
to demonstrate the issue. Let us temporarily define List A as Mu (ListF A). The canonical way
to define the empty list would be:

Definition mkNil := mu (List A) (fun x => x) (NilF A)

But given this, there are infinitely many other definitions. For any Q : Set, we have

Definition mkNil' := mu Q (fun x => mkNil) (NilF A)

With the fmap function for ListF A, fmap f (NilF A) equals NilF B for any f : A -> B. So if we
apply outMu from Figure 18 to mkNil' or mkNil, we will get NilF (List A). But critically, mkNil
and mkNil' are not equal, neither definitionally nor provably. Of course, one could define a function
that puts Mu values in canonical form by folding inMu over them. Then mkNil and mkNil' would
be equivalent. But they would still not be provably equal, which is the problem of noncanonicity.
This is the price one pays with Matthes’s technique. We will see below (Section 8.3) how to work
around noncanonicity in proofs.

To use these ideas to define the recursive types Alg and SAlg, we need a higher-kinded version
of Mu, to account for the carrier of the algebra. In fact, this is what Matthes used, for studying
nested datatypes. This gives us recursive versions of Alg and SAlg. We use rollAlg, unrollAlg,
etc. to roll and unroll the recursive type expressions.
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6.2 Implementing the Dc Type

Let us see now how to implement the Dc type, and its fold and sfold functions from Figure 5.
Our development is generic in a functor F. As noted earlier, our approach is based on ideas from
lambda-encodings of data. We define Dc recursively from DcF as follows:

Definition DcF(C : Set) :=

forall (X : Set -> Set) (FunX : Functor X), Alg X -> X C.

Definition Dc := Mu DcF.

So a value of type Dc is a function which, for any algebra with functorial carrier X, produces a
result of type X Dc. Functoriality of the carrier is required so that the occurrence of Dc in X Dc

is positive, making DcF a positive-recursive type. The straightforward proof that DcF is a functor
requires Coq’s often asserted axiom of functional extensionality, in order to formalize the argument
that functoriality of X implies functoriality of DcF.
Using inMu and outMu, we define functions rollDc and unrollDc, witnessing that DcF Dc is a

retraction of Dc. Defining fold is then trivial, by construction:

Definition fold : FoldT Alg Dc := fun X FunX alg d => unrollDc d X FunX alg.

A Dc value is exactly a function that can be used to fold an algebra.
Not at all trivial, however, is the definition of sfold, which recurses over a Dc value using an

SAlg. To understand why, let us attempt the definition of the constructor inDc for Dc. This function
must look like this, for some values of R?, fo?, sfo?, and rec?, which are the components of the
recursion universe that the (unrolled) alg is expecting:

Definition inDc : F Dc -> Dc :=

fun d => rollDc (fun X xmap alg => unrollAlg alg R? fo? sfo? rec? d).

The choices of all of these are clear, except for sfo?:

• R? should be Dc.
• fo? is supposed to have type FoldT Alg R?, which is satisfied by fold : FoldT Alg Dc.
• rec? is supposed to have type R? -> X R?.We can achieve this using the term fold X xmap alg,
as this has type Dc -> X Dc due to the typing of fold (recalling the definition of FoldT in
Section 4.2).

• d has the correct type F Dc for the subdata structure.

To instantiate sfo?, we will define sfold, for folding an SAlg over a value of type Dc. It was trivial
to define fold, because a Dc value is essentially its own fold function for algebras. But SAlg is a
different interface, and cannot be folded directly with a Dc value.

To solve this problem, we define a function promote that converts an SAlg to an Alg, which may
then be folded by a Dc. The definition of promote, shown in Figure 19, is the most intricate part of
our derivation. The first subtlety is that to fold an SAlg, it turns out that we need to know that
the abstract type R of the Alg can be mapped to Dc. So instead of carrier X, the Alg constructed
by promote has carrier RevealT X, which adds a function type R -> Dc to the original carrier.
The code for promote names this function “reveal”, as it reveals the identity of R to be Dc. This
revelation is trivial outside the Alg, because in the definition of sfold at the end of the figure,
where we do a fold, the return type is RevealT Dc. This means that our requirement of a function
R -> Dc becomes the trivial requirement of a function of type Dc -> Dc. This is met by the identity
function, at the end of the definition of sfold.
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Definition RevealT(X : Set -> Set) : Set -> Set := fun R => (R -> Dc) -> (X Dc).

Definition promote : forall (X : Set -> Set)(FunX : Functor X),

(SAlg X) -> Alg (RevealT X) :=

fun X funX salg =>

rollAlg (fun R fo sfo rec fr reveal =>

let abstIn := fun fr =>

rollDc (fun X funX alg =>

fmap reveal (unrollAlg alg R fo sfo (fo X funX alg) fr))

in let rec' := sfo X funX salg

in unrollSAlg salg Dc R reveal sfo abstIn rec' fr).

Definition sfold : FoldT SAlg Dc :=

fun X funX salg x =>

fold (RevealT X) (FunRevealT X funX) (promote X funX salg) x (fun x => x).

Fig. 19. Code for promote, which converts an SAlg into an Alg

Within the algebra constructed by promote, however, this reveal function has type R -> Dc,
where R is the abstract type of the algebra. This is not a trivial tool to add to the toolbox. Let us see
what we need in order to use the salg in the body of the algebra created by the call to rollAlg in
the figure. We must have:

unrollSAlg salg P? R? up? sfold? abstIn? rec? fr

We choose these instantiations:

• P? is Dc.
• R? is the abstract type R of the algebra (i.e., the one we are constructing).
• up? is reveal, as this has type R -> Dc (matching R? -> P?).
• sfold? is the sfo function of the algebra.
• rec? is sfo X funX salg, which has type R -> X R, thanks to the type of sfo.

This leaves abstIn? to define. The SAlg interface says it should have type F R? -> P?, which
becomes F R -> Dc with the instantiations we have made for R? and P?. Let us walk through the
definition of abstIn in the body of promote (Figure 19). It takes in fr : F R, and must produce a
value of type Dc. To do this, it applies rollDc to a function taking in an algebra alg with functorial
carrier X. That function must then return a value of type X Dc. (This is the definition of a Dc value,
as a function that applies an X-algebra to obtain a value of type X Dc.) We apply the (unrolled) alg
to instantiate the recursion universe for alg. The components are all inherited from the algebra
that promote is defining, except that we use fo X funX alg for the rec : R -> F R function
expected by the alg. Since we are supplying R as the value for the alg’s abstract type, the whole
application unrollAlg alg ... has type X R. We can then obtain the required type X Dc by
applying fmap reveal, which has type F R -> F Dc.

6.3 Discussion

The above construction is intricate, but explains some facets of the interface. We can see now why
Alg requires a fo function in addition to an sfo function: we need that fo function where we apply
the alg in the definition of abstIn. Without it, the definition of promote could not be completed.
We can also see why two types of algebras are needed. If we just had SAlg, then we would get
stuck trying to define inDc: there, we need to apply an algebra (hypothetically, an SAlg) to the
components of the recursion universe that it requires. But an SAlg requires an abstract version of
the inDc function itself! How could we provide this in the middle of the definition of inDc? The
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Theorem ComputationLaw :

forall (X : Set -> Set) (FunX : Functor X)(alg : Alg X)(d : F Dc),

fold X FunX alg (inDc d) =

unrollAlg alg Dc fold sfold (fold X FunX alg) d.

Fig. 20. Computation law, showing how an elimination (fold) of an introduction (inDc d) computes.

above construction manages to do so, by breaking the circularity in stages: first we define abstIn
(in the code for promote) assuming we have a function sfo, and then we use promote to define
the real sfold. The cost of this technique is requiring two types of algebra. RevealT may seem
unnecessary, as we could just build in the reveal function to the recursion universe. We found
that doing so results in a definition of abstIn that cannot be proved extensionally equivalent to
inDc. This makes it impossible to prove what we call motive-preservation lemmas, which we will
see (Section 8) play a crucial role in reasoning about subsidiary recursions.
Finally, algebraic approaches to recursion usually include a computation law, expressing how

folding an algebra over a constructed value computes. With the above definitions, we can derive
the law shown in Figure 20, which says that folding an algebra over inDc d invokes the algebra
with the various expected values for the operations in the recursion universe, and d for the subdata
structure.

6.4 Functorializing Datatypes

While the above definitions are defined once and for all, they must be instantiated with the concrete
functor being used in a divide-and-conquer recursion. As alluded to previously, inductive datatypes
defined by Coq’s Inductive datatype command (e.g., list A) are different from their functorial
representations (e.g., List A) that divide-and-conquer recursions operate over. In order to apply
our approach, a user must define the functor corresponding for the datatype being recursed over.
In addition to the representation of the functor as a datatype (e.g., ListF A), users must also
provide an implementation of fmap, a proof of the fmapId identity law, and functions for recursing
over an encoded datatype via an algebra. The definitions of all these are largely boilerplate, and
our Coq implementation includes a library for automatically generating each of them from a
user-specified datatype. Our library is built on IDT [Ye and Delaware 2022], a Coq library for
automatically generating exactly these sorts of boilerplate definitions via a combination of tactic-
based metaprogramming and the MetaCoq framework [Sozeau et al. 2020]. This library also
automatically generates a variety of convenient definitions for users, including type aliases (e.g.,
ListSFoldT), constructors for functorial encodings of datatypes, and conversion functions between
a datatype and its functorial representation (e.g. toList and fromList).

7 ASSUMPTIONS AND LIMITATIONS

Before moving on to a discussion of how to reason about functions defined using this approach,
we reflect on the requirements our divide-and-conquer interface and implementation place on the
underlying type system.While the interfaces of both regular and subsidiary algebras provide several
components, the most advanced feature needed is the sort of type polymorphism found in most
functional languages. The implementation of our algebras, on the other hand, is more demanding.
Our implementation requires a fixpoint operator on functors that cannot be defined directly in
languages that enforce strict-positivity restrictions on inductive datatype definitions. Happily, we
may apply Matthes’s approximation of this operator to work around this issue [Matthes 2009].
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Impredicative Set. Less happily, this form of impredicative typing is not in line with many modern
proof assistants, including Lean and Agda, which only support predicative computationally relevant
universes (Lean, of course, has an impredicative computationally irrelevant universe at the bottom
of its type hierarchy). This design decision, which Coq itself adopted after version 8.0, was driven
by a desire for compatibility with classical axioms, in particular excluded-middle and the axiom
of description. Thus, our Coq implementation relies on the impredicative-set option, which
restores this former functionality. While not standard, this choice is in line with other recent Coq
developments, including mechanizations of modular metatheory [Delaware et al. 2013a,b], the
coq-of-ocaml project [Claret 2021], a formalization of monad transformers [Affeldt and Nowak
2021], the development of a model of relational parametricity for System Fl by Atkey [2012], and
Matthes’ aforementioned work [Matthes 2009].
Thankfully, this option is not completely incompatible with classical logic. Only classical logic

stated in impredicative set is inconsistent with impredicative-set, so it is possible to use the
’standard’ law of excluded middle for propositions: ∀� : %A>?,� ∨ ¬�. While care must still be
taken when combining axioms of choice with LEM or predicate extensionality, many classical
developments are compatible with impredicative-set.

Applicability. Recursive functions which do not recurse on subdata of the input argument are
not directly supported by our interface. A famous artificial example is McCarthy’s 91 function:

f91 n = if n > 100 then n - 10 else f91 (f91 (n + 11))

Since the first recursive call is on a larger input, this function falls outside the scope of our approach.

inner gcd x O = (S x)

inner gcd x (S y) =

if (lte x y) then

inner gcd x (sub y x)

else

gcd (sub x y) (S y)

gcd' O y = y

gcd' (S x) y = inner gcd' x y

Fig. 21. An implementation of gcd in Haskell, de-

composed into two recursions

On the other hand, we can handle functions us-
ing nonstructural lexicographic recursion. An exam-
ple is the Euclidean algorithm for greatest common
divisor. The Haskell implementation is shown in
Figure 21; we elide the port of this to our combi-
nators, to focus just on the form of the recursion.
The usual approach to lexicographic recursion ap-
plies: split a two-argument lexicographic recursion
into two nested one-argument recursions. The gcd'
function is the outer recursion, recursing on the first
argument; inner recurses on the second. The gcd'
function passes itself to inner, thus allowing us to
separate these nested recursions: usually one would write inner as a syntactic subterm of gcd'
(the outer recursion). Our version in Coq is to separate these functions in the same way, thanks to
the compositionality our approach inherits from typing.

We also note that some advanced encodings of recursive functions that use dependent types to
guarantee totality can also easily represent partial functions, which our interfaces do not directly
support. See Section 9 for a more detailed comparison.

8 DIVIDE-AND-CONQUER INDUCTION, WITH EXAMPLES

In this section, we consider an induction principle for reasoning about divide-and-conquer recur-
sions. It turns out that a nice way to derive this is as an indexed version of the recursion principle,
parametrized by index type I : Set (cf. Bernardy and Lasson [2011]). Here, I will be instantiated
to Dc (the type for divide-and-conquer recursions). To provide a glimpse of the indexed develop-
ment, consider the type for indexed algebras. Carriers have kind (I -> Prop) -> (I -> Prop),
generalizing the kind Set -> Set of nonindexed algebras by adding in the index type I. We see
also the change to use Prop instead of Set, to support induction. A version retaining Set is also
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possible, for indexed programming (e.g., with length-indexed vectors). We abbreviate the kind
I -> Prop as kMo, because it is the kind for motives, in the sense of McBride [2002]. So the carrier
for an indexed algebra is a motive-transformer X : kMo -> kMo. The type of indexed algebras is
Algi, specifying indexed versions of the components given to Alg:

• R : kMo, the abstract motive for the indexed recursion
• fo : forall (d : I), FoldTi Algi R d, the indexed fold function. For the case we
are considering here, of divide-and-conquer induction, this allows initiating a subsidiary
induction given a proof of R d for any d.

• There is similarly a version of sfo that uses an SAlgi instead of an Algi.
• ih : forall (d : I), R d -> X R d. Given a proof that the abstract motive R holds of d,
this allows one to conclude that the motive X R holds of d. Invoking this function corresponds
to applying the induction hypothesis.

• d : I and fd : Fi R d. This fd can be thought of as containing proofs of the abstract
motive for various indices, and itself has index d.

The indexed algebra is then required to prove X R d. We denote the indexed version of Dc as
Dci. A value of type Dci d can be understood as evidence that we may prove properties of d by
divide-and-conquer induction.
For lists, the indexed functor is the following, where lkMo abbreviates List A -> Prop:

Inductive ListFi(A : Set)(R : lkMo) : lkMo :=

nilFi : ListFi A R mkNil

| consFi : forall (h : A)(t : List A), R t -> ListFi A R (mkCons h t).

This looks just like the nonindexed ListF A functor, except that the return types of the constructor
are indexed by values of type List A. Again, following Bernardy and Lasson [2011], we can see this
as the realizability translation of the nonindexed ListF A. We also derive the following indexed
conversion function:

Definition toListi(xs : list A) : Listi A (toList xs)

This converts a list xs from Coq’s standard library into evidence that it is legal to prove properties
about the List A version of xs (namely toList xs) by divide-and-conquer induction.
To prove a theorem, we apply an indexed algebra using an indexed version of fold:

Definition foldi(i : I) : FoldTi Algi Dci i.

Expanding the definition of FoldTi, the return type becomes:

forall (X : kMo -> kMo) (xmap : Functori I X), Algi X -> Dci i -> X Dci i.

This says that given i : I, an indexed algebra with carrier X, and a proof of Dci i, we can derive
X Dci i. Again, this shows Dci i acting as permission to perform divide-and-conquer induction,
in this case to prove X Dci about i.

8.1 Decoding Property for rle

Using indexed algebras, it is possible to reason about the behavior of divide-and-conquer recursions.
As an example, suppose we wish to show decoding the run-length encoding of a list results in the
original list, where rld : list (nat * A) -> list A is the obvious decoding function:

Theorem RldRle (xs : list A): rld (Rle (toList xs)) = xs.

Proving this theorem requires the three lemmas about span formulated in Figure 22. The first
says that appending the results of a call to span returns the original list (modulo some conversions
to list from List). The second uses the inductive proposition Forall from Coq’s standard library
to state that all the elements of the prefix returned by span satisfy p. These lemmas are proved
using indexed algebras with constant (indexed) carriers. In contrast, MotivePresF is not constant:
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Definition SpanAppendF(p : A -> bool)(xs : List A) : Prop :=

forall (l : list A)(r : List A) ,

span p xs = (l,r) -> fromList xs = l ++ (fromList r).

Definition SpanForallF(p : A -> bool)(xs : List A) : Prop :=

forall (l : list A)(r : List A),

span p xs = (l,r) -> Forall (fun a => p a = true) l.

Definition MotivePresF(p : A -> bool)(R : List A -> Prop)(xs : List A) : Prop :=

forall (l : list A)(r : List A),

span p xs = (l,r) -> R r.

Fig. 22. Formulations of three lemmas about span

Definition MotivePresF(R : List A -> Prop) (l : List A) :=

let ret := Split A l in

R (fst ret) /\ R (snd ret).

Fig. 23. Carrier for proving that Split preserves motives

it expresses that span preserves motives from the input to the returned suffix r. When the abstract
motive of the outer recursion holds of a value, we may invoke the induction hypothesis. So motive-
preservation of span is the key to invoking our outer induction hypothesis on the returned suffix,
when reasoning subsidiarily about span.

Using these lemmas, we can write a short (10 lines) proof of RldRle using divide-and-conquer
induction. This proof invokes the lemmas about span subsidiarily, so that we may apply our
induction hypothesis to the suffix that span returns (on which mapThrough then recurses). We can
reuse the lemmas about span for other proofs. For example, proving that all the lists returned by
wordsBy p consist of elements where the predicate p does not hold uses two of these lemmas.

8.2 The Sorting Functions Indeed Sort

To prove that mergeSort sorts requires just one helper lemma, namely that the Split function for
splitting a list preserves abstract motives. The carrier for the indexed algebra is shown in Figure 23.
With this proved, verifying mergesort proceeds easily by divide-and-conquer induction: the abstract
motive for that proof is preserved by Split, and hence we may invoke the induction hypothesis on
the lists Split returns. We may then apply a theorem from Coq’s standard library, that merging
sorted lists yields a sorted list.

Verifying that Quicksort truly sorts is more involved, as one must prove first that the partition
function whose Alg we saw above really does partition the list. This is proven with an indexed
subsidiary algebra, so that we may then apply the outer induction hypothesis to the results of
partitioning. A further subsidiary induction is required to show that the sorted lists are still
partitioned, so that appending them, with the pivot element in the middle, is indeed sorted.

8.3 Noncanonicity

When proving properties about subsidiary recursions on xs : List A, one should be aware that
nothing prevents the property from being applied to noncanonical Lists. For example, suppose we
wish to prove that if all elements of a list satisfy p, then the suffix returned by span is empty. It is
dangerous to phrase this as “the suffix equals mkNil”, because for a noncanonical input xs, span
will return that same noncanonical xs as the suffix (and so it may be a noncanonical empty list, not
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Definition SpanForall2F(p : A -> bool)(xs : List A) : Prop :=

Forall (fun a => p a = true) (fromList xs) ->

span p xs = (fromList xs, getNil xs).

Fig. 24. Motive stating if all elements of a list satisfy p, then span returns the empty suffix, where the la�er

is computed using getNil to avoid noncanonicity problems.

equal to mkNil). The solution in this case is to use a function getNil that computes an empty list
from xs. The statement that one can prove is shown in Figure 24.

8.4 A Comparison with Well-Founded Induction

In this section, we compare two proofs about mergesort. The first is the one already introduced
above (Section 8.2), using our approach. The second is about a version mergeSortWf whose central
helper function msHWf is written using Function. The code is shown in Figure 25. The proof that
this helper function produces sorted output uses an induction principle generated by Function, to
mirror the pattern of msHWf’s recursive calls. The induction principle is shown in Figure 25, and
states that to prove a property P of a list l, element a, and output msHWf l a, it suffices to prove a
base case for empty l, and a step case for nonempty l, where one may assume the property holds
of the results of recursive calls on the components returned by split. This is a very convenient
principle to have proven automatically, and makes the final proof just 13 lines long, invoking a
lemma from the Coq standard library that merging sorted lists results in a sorted list. The proof of
msHWf_ind that Function generates, however, runs to a somewhat hefty 100 lines.
The proof using divide-and-conquer induction also applies that lemma about merging sorted

lists, and is just a little longer, weighing in at 16 lines. Several of these lines perform some extra
control of conversion, to pass from explicit applications of fold and sfold to the functions like
mergesortH and such that are named in the theorem. Instead of an automatically derived induction
principle, the proof makes use of divide-and-conquer induction, which allows us to invoke the
induction hypothesis on the results of split, as long as we can prove that split preserves abstract
motives. This property, shown in Figure 23, was discussed already. Its proof is 29 lines long. Because
it exactly follows the structure of split, and indeed can be seen as nothing more than lifting split
from simple to indexed typing, we anticipate it could be generated automatically, as an extension
to the library we discussed in Section 6.4 above.
So to compare, the well-founded proof and divide-and-conquer proof are of similar lengths,

though there is some extra work in the latter to convert from explicit applications of fold and
sfold. The well-founded proof rests on an automatically generated induction principle whose
proof is just under 100 lines long, while the divide-and-conquer proof relies on a lemma showing
that split preserves abstract motives, whose proof is 29 lines long. The divide-and-conquer proof
uses less familiar machinery, of course, and so qualitatively may be argued to be somewhat more
difficult than the well-founded version. Nevertheless, the methods seem comparable, thus providing
evidence that the divide-and-conquer approach could be developed as a viable alternative to the
standard well-founded approach.

9 FURTHER RELATED WORK

Our work contributes to the program proposed by Owens and Slind, of broadening the class of
functional programs that can be accommodated in theorem provers [Owens and Slind 2008]. Bove
et al. [2016] present a detailed survey of partiality and recursion in theorem provers. Several
works in this direction have also considered how to accomodate partial functions, in addition
to the non-structurally recursive total functions handled by our solution. One solution is to use
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Function msHWf (l:list A)(a : A)

{measure length l} : list A :=

match l with

| [ ] => [a]

| (x :: xs) =>

let ret := split xs in

merge (msHWf (fst ret) a)

(msHWf (snd ret) x)

end.

...

Qed.

Definition mergeSortWf

(l : list A) : list A :=

match l with

| [ ] => []

| hd :: tl => msHWf tl hd

end.

msHWf_ind

: forall P : list A -> A -> list A -> Prop,

(forall (l : list A) (a : A),

l = [] -> P [] a [a]) ->

(forall (l : list A) (a x : A)

(xs : list A),

l = x :: xs ->

let ret := split xs in

P (fst ret) a (msHWf (fst ret) a) ->

P (snd ret) x (msHWf (snd ret) x) ->

P (x :: xs) a (merge

(msHWf (fst ret) a)

(msHWf (snd ret) x))) ->

forall (l : list A) (a : A),

P l a (msHWf l a)

Fig. 25. Well-founded version of mergesort and its induction principle, wri�en using Function.

dependent types to restrict the domains of the function inputs to precisely those on which the
function is defined, thus converting a partial function into a total one. As one example, Bove and
Capretta [2005] present a technique to automatically derive an inductive predicate characterizing
the domain of a recursive function. They then automatically construct a total version of the function
that recurses over such a proof. Totality is expressed as the property that such a witness can be
constructed for all inputs.
Charguéraud [2010] propose an alternative approach in the form of a general fixed point com-

binator for Coq which supports partial functions in addition to higher-order and nested recur-
sion/corecursion. This approach does not require dependent types, but the combinator relies on
Hilbert’s epsilon operator and propositional extensionality, axioms that must be added to the
underlying type theory and together make the underlying logic classical [Bell 1993]. Furthermore,
to guarantee termination and productivity, users of this library must prove a contraction condi-
tion [Matthews 1999], a generalization of the accessibility predicate of well-founded recursion. An
interesting point of comparison with our work is their implementation of Harper’s continuation-
based regular-expression matcher [Charguéraud 2021]. Formulated as a partial function, their proof
that it is well-defined for normal regular expressions consists of ∼230 LoC (including comments and
some redundancy which is shown to be amenable to refactoring). In contrast, our implementation
is well-defined on the same domain by construction.

Similar results to Charguéraud [2010] have been obtained for Isabelle/HOL, using different foun-
dations. An impressively rich set of nested recursive and corecursive functions, including nonuni-
formly indexed ones, are derived definitionally from the unmodified axioms of Isabelle/HOL [Bi-
endarra et al. 2017]. Breitner et al. [2021] axiomatize an approach to modeling partial Haskell
functions in Coq so that they can be extrinsically proved terminating on their domain; they observe
that this result is an instance of the recursive combinator of Charguéraud [2010].
Our method is similar to the technique of sized types, in providing a type-based method for

termination [Barthe et al. 2004b; Hughes et al. 1996]. With sized types, datatypes are indexed with
abstract sizes, which must then be propagated through code, using dependent types. In contrast,
our approach relies just on polymorphism, and does not require dependent types.
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Uustalu and Vene [2011] developed a categorical view of a recursion scheme allowing one level of
subsidiary recursion, and illustrated it in Haskell with an artificial example. In contrast, our scheme
allows arbitrary finite nestings of recursion, and enables abstract application of constructors. We
illustrated it in Coq with realistic examples. It seems that generalizing the carriers of algebras to
functors is the critical step enabling such examples.

Mendler introduced the idea of using universal abstraction to support compositional termination
checking [Mendler 1991]. Previous work explored the categorical perspective on Mendler-style
recursion [Uustalu and Vene 1999]. It has also been considered for negative type schemes [Ahn
and Sheard 2011]. Previous work on the Cedille proof assistant showed how to derive inductive
datatypes using extensions of the Mendler encoding [Firsov et al. 2018; Firsov and Stump 2018].
We do not derive inductive types, but rather a terminating recursion scheme for existing datatypes.

10 CONCLUSION AND FUTURE WORK

We have seen how to implement an interface for divide-and-conquer recursion in Coq, using just the
typing of the Calculus of Constructions to enforce termination. We demonstrated our technique on
a diverse range of examples, including classic divide-and-conquer algorithms like mergesort and
quicksort, as well as challenge problems like Harper’s regular-expression matcher. We motivated
our interest in an alternative to well-founded recursion by a detailed evaluation of Coq’s Function,
Program, and Equations commands. We sketched also an indexed version of the development, and
showed how it can be used to write proofs about our example programs.
We envision future work in two directions. First, there is more to do to automate parts of the

approach. For example, lemmas that subsidiary recursions preserve motives are essential to our
approach to divide-and-conquer induction. These lemmas closely follow the form of the original
program, and so it should be possible to produce them automatically. A second direction is to
capitalize on the fact that our approach does not require dependent types, and so is suitable for
strong functional programming in the sense of Turner [1995]. The research problem is to design a
language providing native support for divide-and-conquer recursion, something which has not
been previously achieved.
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