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Abstract. We are using the Agda programming language and proof
assistant to formally verify the correctness of a Byzantine Fault Tolerant
consensus implementation based on HotStuff / LibraBFT. The Agda
implementation is a translation of our Haskell implementation based on
LibraBFT. This paper focuses on one aspect of this work.
We have developed a library that enables the translated Agda imple-
mentation to closely mirror the Haskell code on which it is based. This
makes it easier and more efficient to review the translation for accu-
racy, and to maintain the translated Agda code when the Haskell code
changes, thereby reducing the risk of translation errors. We also explain
how we capture the semantics of the syntactic features provided by our
library, thus enabling formal reasoning about programs that use them;
details of how we reason about the resulting Agda implementation will
be presented in a future paper.
The library that we present is independent of our particular verification
project, and is available, open-source, for others to use and extend.

Keywords: formal verification, Agda, Haskell, weakest precondition, Dijkstra
monad

1 Introduction

Due to attractive properties relative to previous Byzantine Fault Tolerant (BFT)
consensus protocols, implementations based on HotStuff [34] are being devel-
oped and adopted. For example, the Diem Foundation (formerly Libra Associ-
ation) was until recently developing LibraBFT based on HotStuff [5, 32].
(LibraBFT was renamed to DiemBFT before being discontinued; other vari-
ants are emerging.)

It is notoriously difficult to build distributed systems that are correct, espe-
cially if byzantine faults [21] may occur, that is, some participants may ac-
tively and maliciously deviate from the protocol. Many published consensus
algorithms—including some with manual correctness proofs—have been shown
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to be incorrect [9, 33], meaning that two honest participants can be convinced
to accept conflicting decisions, even if all assumptions are satisfied. Therefore,
precise, machine-checked formal verification is essential, particularly for new
protocols that are being adopted in practice.

In this paper, we describe some aspects of our ongoing work towards verifying
correctness of an Agda port of our Haskell implementation of BFT consensus,
which is based on LibraBFT. Our initial focus is on proving safety properties
for a single “epoch”, during which participating peers and protocol parame-
ters do not change. We have reduced the required proof obligations to showing
that the code executed by honest (non-byzantine) peers satisfies some precise
assumptions [11, 12].

Translating Haskell code to equivalent Agda is often quite straightforward—
requiring only minor syntactic changes—because Agda’s syntax is based on
Haskell’s. However, Agda does not directly support all Haskell syntax and li-
braries. As a result, early versions of our Agda translation differed significantly
from the Haskell code being modeled, making review and maintenance more
difficult, and increasing the risk of inaccuracy.

This paper focuses on a library that we have developed in Agda to a) support
various Haskell features that Agda lacks, thus enabling our Agda translation to
closely track the Haskell code, and b) capture their semantics, enabling formal
verification of properties about the code. As a result, we have been able to
port our entire Haskell implementation to Agda code that, in the vast majority
of cases, mirrors the Haskell code so closely that side-by-side review requires
virtually no mental overhead in our experience.

Haskell features that our library supports for use in Agda include:

– comparison and conditionals based on decidable equality, which enables pro-
viding proofs with evidence of the relationship between two compared values
for the particular case being proved;

– lenses for (nested) record field access and update
– monads for composing programs for various contexts
– monad instances, including for Either , List and RWS (Reader, Writer, State)

Our library also includes straightforward Agda implementations of various
Haskell library functions that are not provided by Agda’s standard library; see
the Haskell .Prelude module in the accompanying open-source repository [7].

Having ported our Haskell implementation to Agda using our library, we
are working on verifying that it ensures the properties that we have already
proved are sufficient to establish correctness of the implementation [11, 12]. To
enable reasoning about the behavior of code in the Either and RWS monads,
our library provides a predicate transformer semantics for such code based on
Dijkstra’s weakest precondition calculus [4, 23, 28, 30]. Details of how our library
supports this and how we use it are beyond the scope of this paper, but we do
discuss how we assign semantics to monadic programs for Either and RWS .

Section 2 presents several examples that illustrate some of the syntactic fea-
tures we have introduced, and briefly discusses some of the interesting aspects
of implementing them. References are provided to enable the reader to locate
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the details in our open-source development. In Section 3, we describe further
extensions that establish the foundation for the machinery that we use to reason
about monadic programs. Section 4 dicusses related work, some discussion is
included in Section 5, and we conclude in Section 6.

This paper assumes that the reader is familiar with Haskell and has access
to our open-source repository [7]; module X .Y can be found in src/X/Y.agda.

2 Making Agda look (even more) like Haskell
The following Haskell function is part of the implementation that we are veri-
fying. We do not present type definitions or explain the purpose of the code, as
we are interested only in syntax here.
verify :: BlockRetrievalResponse -> ... -> Either ErrLog ()
verify self ... =

if | self^.brpStatus /= BRSSucceeded -> Left ...
| ...
| otherwise -> verifyBlocks (self^.brpBlocks)

The corresponding function in Agda is:

verify : BlockRetrievalResponse → ... → Either ErrLog Unit
verify self ... =

grd|| self ·̂ brpStatus /= BRSSucceeded := Left ...
|| ...
|| otherwise:= verifyBlocks (self ·̂ brpBlocks)

This example demonstrates several of the syntactic features that we added
to our library to enable the Agda version to closely mirror the Haskell code.

Guarded conditionals Agda does not support Haskell guard syntax. There-
fore, we defined equivalent syntax (with changes such as replacing “if |” with
“grd‖” and “|” with “‖” to avoid conflicts with core Agda syntax); see module
Haskell .Prelude.

Equality and comparison: To support the == and /= operators from Haskell’s
Data.Eq typeclass, we define an Eq record that provides the same operators
in Agda (Haskell .Modules .Eq). However, to construct proofs in Agda, we need
evidence that two values are or are not equal. Therefore, our Eq record actually
contains only one field, _?

=_, which provides a method for deciding equality for
the relevant type; == and /= are defined using it. Our library also contains
an implementation of Haskell’s compare, implemented via Agda’s <-cmp, which
provides evidence of the relationship between two values; see Haskell .Prelude.

Lenses: The Haskell code uses the Lens libray [18] for (nested) record field access
and update. To enable the same in Agda, we developed an Optics library, which
uses reflection to derive van Laarhoven lenses [20] for simple, non-dependent
records. Because we are interested in translating code from Haskell, the records
that we use are all non-dependent, and thus have van Laarhoven lenses.
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Monads: Much of our Haskell code is monadic. For example, we use the Either
monad [24] for sequencing and error handling.

Like Haskell, Agda supports monadic do-notation, and the Agda standard
library comes with a definition of a monad as a record which, in combination
with instance arguments, can be used to simulate Haskell’s Monad typeclass.
However, the Agda standard library defines Monad as having type Set ℓ → Set ℓ
where ℓ is an arbitrary universe level [1]. In contrast, the types that we use
to represent program ASTs (for example, the EitherD definition shown later)
have type Set → Set1 because some constructors quantify over Sets. We have
therefore defined our own Monad record with return and >>= fields. We similarly
define records for Applicative and Functor , enabling _<*>_ and _<$>_ operators,
respectively, and functions from Monad to Applicative and from Applicative to
Functor . These operators are made available in various contexts by defining
Agda instances of the relevant monad (e.g., Either in the example above). An
important side effect is providing a definition for >>=, which is how the semantics
of ← in a do block is defined in Agda. The next example illustrates all of this
functionality in the context of the RWS monad [16], which combines Reader,
Writer and State monads.

processProposalM : Block → RWS Unit Output RoundManager Unit
processProposalM proposal = do

...
vp ← ProposerElection .isValidProposalM proposal
grd|| isNothing (proposal ·̂ bAuthor) := logErr ...
|| ...
|| otherwise:=
(executeAndVoteM proposal >>= λ where

(Left e) → logErr e
(Right vote) → do

RoundState.recordVote vote
si ← BlockStore.syncInfoM
recipient ← ProposerElection .getValidProposer

<$> use lProposerElection
<∗> pure (proposal ·̂ bRound + 1 )

tell $ (SendVote (VoteMsg vote si) recipient)) :: []

In the above example:

– the Reader monad is not used (so the type that it can read is Unit);
– the Writer monad enables values (of type Output) to be written using tell ;
– the State monad enables fetching, replacing and updating state of type

RoundManager via functions get , put and modify (not shown), respectively,
as well as accessing a nested field via a lens (e.g., lProposerElection above)
with use.

The processProposalM function does not directly modify the State. However,
it calls another RWS function RoundState.recordVote, which does:
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recordVoteM : Vote → RWS Unit Output RoundManager Unit
recordVoteM v = rsVoteSent--rm ·= just v

Here, ·= is syntax for setL; it sets a (possibly nested) field of the State via a
lens (rsVoteSent--rm). It is implemented using RWS ’s get and put operations.

3 Support for reasoning about monadic programs

To reason about effects, we equip our monadic code with a predicate transformer
semantics based on Dijkstra’s weakest precondition calculus [31] (see also Di-
jkstra monads [4, 23, 28, 30]). This enables automatically calculating weakest
preconditions for desired postconditions. Figure 1 illustrates using Either E , the
monad for code that may throw exceptions of type E .

The type EitherD E enables expressing the AST of code that may throw er-
rors of type E (see Dijkstra.EitherD , and Dijkstra.EitherD .Syntax for its monad
instance) in a way that enables connecting it to its semantics for verification, as
discussed below. EitherD has constructors EitherD--return for returning a pure
value, EitherD--bind for sequencing exceptional code, and EitherD--bail for throw-
ing an exception. Additional constructors (not shown) help to structure proofs
for conditional code.

The operational semantics of an EitherD program is given by EitherD--run.
Running EitherD--bind m f first recursively runs m. If the result is Left x (an
error), then it is returned. If it is Right y , then the result of recursively running
f y is returned. (RWS is defined using a similar approach, but is somewhat more
complicated than EitherD . The free monad for RWS has constructors for return,
bind , gets, put , ask and tell . RWS--run assigns semantics straightforwardly for
most of these. Running RWS--bind m f recursively runs m, calls f with the
value returned by m, which produces another RWS program f x1 . Then, it runs
f x1 with the State resulting from running m, returning a tuple comprising: the
resulting value, the state resulting from running f x1 and the concatenation of
values written by running m and then f x1 .)

EitherD--weakestPre defines, for any EitherD E A program m, a predicate
transformer that produces the weakest precondition required to ensure that a
given postcondition holds after executing m. The weakest precondition for a
postcondition P : Either E A → Set (a predicate over Either E A)
to hold after running EitherD--return x is that P (Right x ) holds (because
EitherD--run (EitherD--return x ) = Right x ); a similar situation applies to
the EitherD--bail case. For EitherD--bind m f , the postcondition that is required
for m is bindPost f P , which is the weakest precondition ensuring that P holds
after executing f with the result (if any) of m. For the case in which m returns
Right y , intuitively, we would require EitherD − weakestPre (f y) ′·. Our defini-
tion also provides an alias c for y , along with evidence that c ≡ y . While this
is logicially equivalent, the aliasing is helpful for keeping the proof state more
comprehensible for a human reader, because they can control whether/when the
structure of c is revealed, and until then see it as a single variable c.
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data EitherD (E : Set) : Set → Set1 where
EitherD--return : ∀ {A} → A → EitherD E A
EitherD--bind : ∀ {A B } → EitherD E A → (A → EitherD E B)

→ EitherD E B
EitherD--bail : ∀ {A} → E → EitherD E A

EitherD--run : EitherD E A → Either E A
EitherD--run (EitherD--return x ) = Right x
EitherD--run (EitherD--bind m f )

with EitherD--run m
... | Left x = Left x
... | Right y = EitherD--run (f y)
EitherD--run (EitherD--bail x ) = Left x

EitherD--weakestPre : (m : EitherD E A) → (P : Either E A → Set) → Set
EitherD--weakestPre (EitherD--return x ) P = P (Right x )
EitherD--weakestPre (EitherD--bind m f ) P =

EitherD--weakestPre m (bindPost f P ) where
bindPost f P (Left x ) = P (Left x )
bindPost f P (Right y) = ∀ c → c ≡ y → EitherD--weakestPre (f c) P

EitherD--weakestPre (EitherD--bail x ) P = P (Left x )

EitherD--contract : (m : EitherD E A) → (P : Either E A → Set)
→ EitherD--weakestPre m P → P (EitherD--run m)

Fig. 1. The EitherD data type and associated definitions

The two semantics—operational and predicate transformer—are connected
by the proof (not shown) of EitherD--contract, which states that, in order to
show postcondition P holds for the result produced by m, it suffices to prove
the weakest precondition of P with respect to m.

4 Related work

We have described a library that we developed to make our Agda code closely
mirror the existing Haskell codebase from which we ported it, thus reducing
the likelihood of errors. Here, we briefly survey some potential alternative ap-
proaches.

Haskell to Agda Our verification tool of choice for our broader project was
Agda [1], due in part to experience and expertise within our group and other
related projects. However, we could have used a different tool for our ver-
ification, such as Coq [6] or Isabelle/HOL [25], using translation tools such
as hs-to-coq [8, 29] or “Haskabelle” [19], respectively (although Haskabelle
seems to be unmaintained and out-of-date). CoverTranslator translates Haskell
to Agda, but it is based on work from 2005 [2] and is not compatible with Agda
2 [13].
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Agda to Haskell: An alternative high-level approach would be to develop our
original code in Agda, verify it, and translate it back to Haskell. Proof assis-
tants generally support “extracting” code to various languages [17, 22], including
Agda’s “MAlonzo” backend [3]. However, due to its attempt to generate Haskell
for any Agda code, code generated by MAlonzo is unreadable and unmaintain-
able, which hinders debugging, performance analysis and tuning. “Agate” [27] is
another Agda-to-Haskell compiler, but it hasn’t been updated since 2008.

We have recently learned of agda2hs [26], which is work-in-progress towards
translating a “Haskell-like” subset of Agda to human-readable Haskell. We cannot
use it at this time because it does not currently support monadic computation.
It includes a library that has similarities to ours, but it does not support guards,
lenses, the RWS monad, etc. There is a potential for our work to influence
improvements to agda2hs’s library and vice versa.

Lenses: Work on non-dependent, dependent and higher lenses [10, 14, 15] in
Agda focuses on exploring their properties rather than providing a library that
is useful in practice. Our Optics library is small, providing only the functionality
and generality required for the purposes of our motivating project.

Predicate transformer semantics: We use a predicate transformer semantics
based on Dijkstra’s weakest precondition calculus as a verification methodology
for programs in Either and RWS monads. This approach can be viewed as a case
study of some of the techniques from the “Dijkstra monad” papers [4, 23, 28, 30].

5 Discussion

Although we have developed sufficient support in our library to enable trans-
lating a substantial Haskell code base (our implementation of BFT consensus
based on HotStuff / LibraBFT) to Agda, we do not claim that it supports all
Haskell language features. Furthermore, only a small number of Haskell library
functions were needed.

Because we have manually implemented these language features and library
functions, it would be possible for our Agda implementations to not faithfully
capture the semantics of the original Haskell, in which case a correctness proof
about the translated Agda version might fail to hold for the original Haskell code.
Nonetheless, the small number of such language features and library functions
we implemented to enable translating our motivating use case are in most cases
based directly on the original Haskell functions and are small enough that we
can be reasonably confident in them by inspection.

Our translation effort also resulted in some changes to the original Haskell
code. In some cases this occurred simply because side-by-side code reviews of
the Agda identified improvements that could be made to the Haskell code. Fur-
thermore, due to our efforts to keep our Haskell code similar to the original Rust
code on which it is based, many functions in the Haskell code would exit in
response to unexpected conditions that are expressed in the original Rust code
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via assertions. We initially considered modifying our system model to capture
this behavior, so that we could express and prove properties showing that the
unexpected conditions cannot occur. This approach was more disruptive than
it was worth. We therefore refactored the Haskell implementation so that, after
successful initialization, no code would ever exit. We did this by changing func-
tions that contained such assertions so that they would return either an error or
the original type, with errors propagated up the stack. This improved the quality
of the implementation by ensuring not only that the desired safety properties
hold, but also that the implementation would not exit unexpectedly.

As noted in Section 3, EitherD has additional constructors to capture con-
ditional code. This enables proof obligations to be automatically generated for
various cases of a conditional. The same is true for RWS . The details are beyond
the scope of this paper, but will be addressed in a forthcoming paper, in which
we generalize from these two examples (EitherD and RWS ), showing that we
can deliver the same benefits for a large class of ASTs of monadic programs by
systematically extending them with constructors for conditionals.

6 Concluding remarks

We have described a library that we developed to support translating Haskell
code to Agda that mirrors it closely and provides the necessary support for prov-
ing properties about it. This support includes various syntactic features, as well
as predicate transformer semantics for Either and RWS (Reader, Writer, State)
monads, which enable automatically determining the weakest precondition re-
quired for a given postcondition.

Our library is available in open source [7], along with the Agda implemen-
tation of Byzantine Fault Tolerant consensus based on HotStuff/LibraBFT
that motivated this work. Nonetheless, our library is independent of this moti-
vating project, and could be used and/or extended for a variety of projects.
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